

 Japan DAISY Consortium

JDC101, 1-1-61 Wakaba-cho, Chofu-shi,

Tokyo 182-0003, Japan

TEL: +81-3-5384-7207 FAX: +81-3-5384-7207

October 11, 2021

Open Letter to Browser Vendors, W3C, and WHATWG: Towards

Accessible Ruby

Dear Browser Vendors, W3C, and WHATWG,

The Japan DAISY Consortium has promoted DAISY textbooks for those Japanese students who

have print disabilities. We have been providing organizational and technical support to those

who produce DAISY textbooks in Japan. We are thus practical rather than theoretical or political.

The historical purpose of introducing ruby to Japanese typesetting practice was

probably to help those who could not read difficult CJK ideographic characters. Ruby

indeed helps such people. However, we have observed that ruby also hampers

accessibility. First, existing text-to-speech implementations do not work well for

documents containing ruby. Second, the typical rendering of ruby is hard to read for

low-vision and dyslexic people.

Making ruby accessible is a challenge. It is necessary to improve browser

implementations, and it is also necessary to improve HTML documents and CSS style

sheets.

We believe that CSS of W3C will play a critical role in making ruby accessible. We also

believe that some features of W3C HTML Ruby not present in WHATWG HTML are

crucial for making ruby accessible. The Japan DAISY Consortium cordially requests

browser vendors, W3C, and WHATWG to study accessibility problems around ruby.

These problems have been sadly overlooked, as we see them.

We hope that this letter will raise awareness on the accessibility issues with ruby, and

that in the near future relevant stakeholders can coordinate and take up the necessary

technical work, both on specifications and more importantly on implementations, to

improve the accessibility of Japanese on the Web.

Current status of ruby accessibility

1) T2S

As of 2021, T2S does not work well for documents containing ruby. We created a wiki

page documenting this problem and hope to create a W3C Note from it.

That page is restricted to user requirements and thus does not consider possible

enhancements to current implementations. Here we would like to point out that the

generation of accessibility trees requires special treatment of ruby. Simply stripping tags

representing ruby while keeping text leads to double reading of base and ruby, which is

very annoying and, in the worst case, completely misleading.

Ideally, each base-ruby pair should be clearly represented in the accessibility tree or

DOM tree. It then becomes easier to use both the base and ruby to choose the most

appropriate phonetics. There should also be some way for authors to indicate if the ruby

is used for phonetic annotations (in which case reading both is inappropriate), or as

supplemental information (in which case both should be read), as heuristics cannot

reliably determine that.

2) Dyslexia

Some dyslexic people cannot separate base characters and ruby. Thus, a base character

with associated ruby looks like an unknown character having a strange radical to them.

To overcome this problem, it is important to widen the gap between base characters

and ruby. But this is not possible in most browsers except Firefox. The use of a different

color for ruby is also helpful and is fortunately supported by most browsers.

https://github.com/Japan-Daisy-Consortium/documents/wiki/Text-to-Speech-of-Electronic-Documents-Containing-Ruby:-User-Requirements
https://github.com/Japan-Daisy-Consortium/documents/wiki/Text-to-Speech-of-Electronic-Documents-Containing-Ruby:-User-Requirements

3) Low vision

Ruby is much smaller than normal text. Ruby is thus difficult for low-vision people to

read.

In printed materials, it is quite common to avoid smaller characters (e.g., っ U+3063) and

use similar-but-larger characters (e.g., つ U+3064) instead. However making this kind of

substitution changes the phonetics of the word, because these smaller and larger

characters, while visually similar, are in fact distinct letters. But IT technology allows

other possibilities. By converting smaller characters to larger characters at rendering

rather than in the document source (see the text-transform property of CSS, currently

only supported in Firefox), we can make ruby easier for low-vision people to read

without hampering T2S.

It is also possible to change the font size of ruby depending on user preferences. Prof.

Nakano of Keio University reported that low-vision students prefer ruby long in height.

4) Textual fallback

Although visual rendering of ruby is expected to put the ruby in parallel to the base, the

textual or linear fallback of ruby is often required. Such fallback is used for metadata,

user interface components (see an EPUB issue), and so forth. When mono ruby is

attached to a sequence of base characters, it is unfortunately too common to see ruby

after each base character (e.g., 東とう京きょう), rather than combined after the compound

word (e.g., 東京とうきょう). Such awkward results are a natural consequence of the

inappropriate structure of WHATWG ruby markup (e.g., <ruby>東<rt>とう</rt>京<rt>きょ

う</rt></ruby>), a problem W3C ruby markup extensions address.

5) Switching of rendering style

Given Japanese text having CJK ideographic characters, one can choose to present ruby-

annotated text in many ways: showing or hiding some or all annotations; inlining them

in addition to, or in place of, the base text; and varying their typesetting style (mono vs

jukugo) and spacing. Different presentations can be appropriate for different reading

levels, reading preferences, and disabilities.

Unlike printed materials, IT technology, in theory, allows on-the-fly switching between

rendering styles, but such switching is not practically realized.

https://github.com/w3c/epub-specs/issues/1793

6) Conversion to braille

When assistive technology converts HTML or EPUB to Japanese braille, just as in the

text-to-speech situation, it would be helpful if each base-ruby pair is clearly represented

in the accessibility tree or DOM tree. It then becomes easier to use both the base and

ruby for choosing the most appropriate braille.

Sincerely,

Hiroshi Kawamura

Chairman of the Steering Committee of the Japan DAISY Consortium

Vice President, Assistive Technology Development Organization (ATDO)

Board Member of the DAISY Consortium (one of the founders)

Member of the WAI/W3C Steering Council

Standing Committee Member of IFLA/LPD Section

Member of the Committee on Services for Persons with Disabilities, Japan Library Association

Global Chair of the ICTA/Rehabilitation International

